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Abstract 

To a given language L, we associate the sets ins(L) (resp. &l(L)) consisting of words with 
the following property: their insertion into (deletion from) any word of L yields words which 
also belong to L. Properties of these sets and of languages which are insertion (deletion) closed 
are obtained. Of special interest is the case when the language is ins-closed (del-closed) and 
finitely generated. Then the minimal set of generators turns out to be a maximal prefix and suffix 
code, which is regular if L is regular. In addition, we study the insertion-base of a language and 
languages which have the property that both they and their complements are ins-closed. 

1. Introduction 

The insertion and deletion are word (language) operations that have been extensively 

studied, for example, in [5-81. They are natural generalizations of the catenation, 

respectively left/right quotient: instead of adding (erasing) a word to the right (from the 

left/right) extremity of another, we insert (delete) it into (from) an arbitrary position. 

The result is usually a set of cardinality greater than two, which contains the catenation 

(left/right quotient) of the words as one of its elements. 

A natural question which arises is to consider sets of words with the property that, 

when inserted (deleted) into (from) any word of a given language L, produce words 

which remain in L. These sets, denoted in the sequel by ins(~) (resp. &l(L)) are defined 

and investigated in Sections 2 and 3. In particular, a method of constructing them from 

the language L by using the dipolar deletion, is obtained. Moreover, a procedure of 

constructing the insertion (deletion) closure of a language is given. Results concerning 

similar concepts in relation with codes can be found in [4]. 
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When a language equals its insertion (deletion) closure, it is called ins-closed (del- 

closed). Section 4 deals with ins-closed (del-closed) languages that are finitely gener- 

ated. Namely, properties of such languages and of their minimal sets of generators are 

obtained. For example, if a regular language is ins-closed and del-closed, its minimal 

set of generators is a regular maximal bifix code. 

If a language L is ins-closed, its words can either be obtained from other words of 

L by insertion, or can be “minimal” in this sense. The insertion base of L consists 

of all words which belong to the second category, that is, cannot be obtained from 

other words of L by insertion. In Section 5 it is shown that if an ins-closed language 

is regular, its ins-base is also regular. If, in addition, the language is del-closed, its 

ins-base is finite. 

Finally, we consider the special case of languages L with the property that any word 

belongs to ins(L). This amounts to the fact that the insertion of any word into a word 

of L is a subset of L. Such languages are called fully ins-closed, and their properties 

are investigated in Section 6. 

In the sequel, for a set S, card(S) is the cardinality of S and SC the complement 

of S. X denotes a finite alphabet and X* the free monoid generated by X under the 

catenation operation. 1 is the empty word and, for a word w EX* and a letter a EX, 

(WI denotes the length of w and (WI, the number of occurrences of the letter a in w. 

For a language L&X*, a&h(L) is the set (~2 EX I3x,y~X*, xuy~L}. 

For further undefined notions and notations in formal language theory and theory of 

codes the reader is referred to [9] (resp. [lo]). 

2. Insertion closure 

Let L 2 X*. To the language L one can associate the set ins(L) consisting of all 

words with the following property: their insertion into any word of L yields a word 

belonging to L. Formally, ins(L) is defined by: 

ins(L)={xEX* jY’uEL,u=qu2 *qxz42EL}. 

Example. Let X = {a, b}. Then, 

- in&Y*) =X*; 

- ins(L,b) = Lab, where L,b = {x EX* 1 1x1, = IXlb}; 

- if L={u”b”In>O} then ins(L)=(l); 

- if Ll =(u2)*, Lz=uLl then ins(L1)=L1 and ins(Lz)=Ll; 

- if L = b*ab* then ins(L) = b* = ins2(L); 

- if L=uX*b then ins(L)=L. 

A language L is called dense (right dense, left dense) if for any w EX* there exist 

x,y EX* (resp. x EX*) such that xwy~ L (resp. wx E L, xw E L). If L is not dense 

(left dense, right dense), it is called thin (left thin, right thin). Note that if ins(L) =X* 

then the language L is dense, but the converse is not true. 
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A word w E Xf is primitive if w = y” for some y E X+ implies n = 1 and w = y. Let 

Q be the set of the primitive words over X. The language Q is dense, but ins(Q) # X* 
because abE Q but abab=(ab)2 $ Q. 

A language L is commutative if for any w EL, L contains all the words obtained 

from w by arbitrarily permuting its letters. 

Proposition 2.1. ins(L) is a submonoid of X*. Moreover, if L is a commutative 
language, then ins(L) is also a commutative language. 

Proof. Let x, y E ins(L) and u = ~1~2 EL. Then 24~~~ EL, uixyz4 EL, hence xy~ ins(L). 

Since 1 E ins(L), ins(L) is not empty. 

For the second claim, it is sufficient to show that xuvy E ins(L) implies xvuy E ins(L). 
If w E L, w = ~1~2, then wtxz4vyw2 EL, hence wtxvuyw2 EL. Therefore xvuy E ins(L). 

n 

In the following we give some properties and characterize ins(L) for a given 

language L. We begin by noticing the connection between ins(L) and the insertion 

operation, which has been studied in [5]. 

Let L,,Lz be two languages over X. The sequential insertion (in short insertion) of 

L2 into LI is defined as 

L, - L*={u~Uu2(U,u2EL,,vEL2}. 

The insertion is a generalization of catenation: given u, v E X*, instead of adding r to 

the right extremity of U, the insertion places v in an arbitrary position in U. The result 

of the insertion of two words is thus in general a set of words with cardinality greater 

than 1. 

The iterated insertion can then be defined as 

Ll - * L2 = ; (L1 -” L*), 
n=O 

where L1 to L2 =L, and L1 -i+’ L2 = (L1 +-’ L2) - L2, for all i30. 

Lemma 2.1. Let L LX* and let u, u E ins(L). Then (c -* u) 2 ins(L). 

Proof. Let w E (u -* u). There exists k 30 such that w E (v -k u). 

We will show, by induction on k, that w E ins(L). If k = 0, then w = v E ins(L). 
Assume the assertion true for k and take w E (v -k+’ u) and z =ztz2 EL. Then, 

w= wiuw2 where wlw2 E(V -k U) & ins(L). Consequently, zi WI ~222 E L. This, to- 

gether with the fact that u E ins(L) imply that ztwluw2z2 EL. As z =ztzz was an arbi- 

trary word in L, we deduce that w E ins(L). 0 

Proposition 2.2. Let L C X*. Then ins2(L) = ins(ins(L)) = ins(L). 

Proof. Assume u E ins(ins(L)). As 1 E ins(L), we have u = lu E ins(L), i.e. ins(ins(L)) 
2 ins(L). Assume now that u E ins(L). Let v = ~1212 E ins(L). Consider VIUU~ EX*. 
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Obviously, 01~~2 E (v +--* u). By Lemma 2.1, zliuvz E ins(L), hence u E ins(ins(l)), 

i.e. ins(L) C ins(ins(l)). 0 

For u,v words over X, the dipolar deletion u zs v is defined by (see [5]) u G$ v = 

{x E X* 1 u = ~1x112, v = ~1~2). In other words, the dipolar deletion erases from u a prefix 

and a suffix whose catenation equals v. The operation can be extended to languages in 

the natural fashion. 

We are now ready to construct the set ins(L) for a given language L. 

Proposition 2.3. ins(L) = (Lc z$ Ly. 

Proof. Take x E ins(L). Assume, for the sake of contradiction, that x 6 (Lc $ L)c. 

Then, x E (Lc =$ L), that is, there exist uixu2 ELM, uiu2 EL such that x E 2.4~~2 s ~1~2. 

We arrived at a contradiction, as x E ins(L) and uiuz EL but the insertion of x into 

24 242 belongs to Lc. 

Consider now a word x E (Lc G L)‘. If x #ins(L), there exists ~1242 EL such that 

uixu2 4 L. This further implies 24x242 E Lc and x E Lc + L - a contradiction with the 

original assumptions about x. 0 

Corollary 2.1. If a language L is regular, then ins(L) is regular and can be efictively 
constructed. 

Proof. It follows as the family of regular languages is closed under dipolar deletion 

(see [5]) and complementation. 0 

A language L such that L 2 ins(L) is called ins-closed. A language L is ins-closed iff 

u = ui u2 EL and v E L imply ui vu2 EL. As a consequence, note that every ins-closed 

language is a subsemigroup of X*. 

In general, submonoids of X* are not ins-closed. For example, let X = {a, b, c} and 

let L = (a(bc)*)*. Then L is a submonoid that is not ins-closed, because a,abc E L, 
but abac $ L. 

If nonempty, the intersection of ins-closed languages is also an ins-closed language. 

Let L be a nonempty language and let IL be the family of all the ins-closed languages 

containing L. This family is nonempty because X* E IL. The intersection 

of the languages of the family I, is clearly an ins-closed language containing L and it 

is called the ins-closure of L. The ins-closure of a language L is the smallest ins-closed 

language containing L. 
Notice that a language L is ins-closed iff L - L 2 L. Indeed, if x EL, ulu2 EL 

then, as x E L & ins(L) we have that ulxu2 EL. For the other implication, take x E L 
and uiu2 EL. As L - L CL we have that uixu2 EL which shows that x E ins(L). 
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Proposition 2.4. The insertion closure of a language L is I(L) = L -* L. 

Proof. “I(L)C_L t* L”: Obvious, as L +----* L is ins-closed and L is included in 

L t-* L. 

“L c* L C I(L)“: We show by induction on k that L tk L C Z(L). For k = 0 the 

assertion holds, as L &I(L). 
Assume that L tk L Cl’(L) and consider a word u EL -kfl L=(L tk L) - 

L. Then u= uluuz where M~Z.Q EL -k L and v E L. As both L +k L and L are 

included in Z(L) and I(L) is ins-closed, we deduce that u E I(L). 
The induction step, and therefore the requested equality are proved. El 

Proposition 2.5. (i) Zf L is a context-free or context-sensitive language, then I(L) is 
a context-free or a context-sensitive language. 

(ii) If L is a regular language, then I(L) is not in general a regular language. 

Proof. (i) If L is context-free or context-sensitive, then so is also LU { l}. Since by [Sj, 

the families of context-free and context-sensitive languages are closed under iterated 

insertion, it follows that Z(L) is context-free or context-sensitive. 

(ii> By [5], the family of regular languages is not closed under iterated insertion. 

For example, let X = (( , )} and let L = { 1, ( )}. The iterated insertion of L into L is 

the Dyck language of order one. Therefore I(L) is the Dyck language which is not a 

regular language. 0 

Note that if L is ins-closed then L +-* L =L. Indeed, as L is ins-closed, we have 

that L = I(L). On the other hand, according to Proposition 2.4, Z(L) = L -* L. 

3. Deletion closure 

Let L LX* and let Sub(L) = {u EX* 1 nuy EL}, that is Sub(L) is the set of the 

subwords of the words in L. To the language L one can associate the set de/(L) 
consisting of ail words x with the following property: x is subword of at least one 

word of L, and the deletion of x from any word of L containing x as subword yields 

words belonging to L. Formally, def(L) is defined by 

de/(L) = {x E Sub(L) ) Vu EL, u = ~1x24 * ~12.42 EL}. 

The condition that x E Sub(L) has been added because otherwise del(L) would con- 

tain irrelevant elements: words which are not subwords of any word of L and thus 

yield 0 as a result of the deletion from L. 

Example. Let X = {a, b}. Then, 

- de/(X* j =X*; 
- del(L,b) = Lab; 
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_ if L = {a”b” 1 n > 0) then deZ(L) = L; 
- if L = b*ab* then deZ(L) = b”. 

Proposition 3.1. Let L LX*. 
(i) If X, y E de&C) and xy E Sub(L), then xy E deZ(L). 

(ii) Zf Sub(L) is a submonoid of X*, then deZ(L) is a submonoid of X*. 

(iii) If L is a commutative language, then deZ(L) is also commutative. 

Proof. (i) Let x,y E deZ(L) with xy E Sub(L). If u=uIxyu2 EL, then uiyuz EL and 

consequently uir4 EL. Therefore xy E deZ(L). 
(ii) Immediate. 

(iii) It is sufficient to show that xuvy l del(L) implies xvuy E deZ(L). Since L is 

commutative, uixuvyuz EL if and only if ulxvuyu2 EL. As xuvy E deZ(L) we have that 

uiu2 EL. This further implies that xvuy E deZ(L). 0 

In the following we show how, for a given language L, the set deZ(L) can be 

constructed. The construction is similar to the one for ins(L) and involves the same 

operation, the dipolar deletion. 

Proposition 3.2. deZ(L) = (L z$ L’)’ rl Sub(L). 

Proof. Let x ~del(L). From the definition of deZ(L) it follows that x E Sub(L). As- 

sume that x 6 (L z$ L’),. This means there exist uixuz EL and uiu:! E Lc such that 

XEUlXU2 * uiu2. We arrived at a contradiction as x E deZ(L) but 241x2~ EL and 

UlU2 @L. 

For the other inclusion, let x E (L + L’), n Sub(L). As x E Sub(L), if x $! deZ(L) 

there exist uixu2 EL such that uiu2 Q? L. This further implies that uru2 E Lc, that is, 

XELG Lc - a contradiction with the initial assumption about x. 0 

A language L is called del-closed if v EL and ~1 vu2 EL imply uiuz EL. 

For example, X* and J&b are del-closed languages that are also ins-closed. Further- 

more, they are both submonoids of X”. 

The notion of a del-closed language is strongly connected with the operation of 

deletion, defined in [5]. Related issues have recently been investigated in [7,8]. 

Let Li,Lz be two languages over the alphabet X. The sequential deletion (in short 

deletion) of L2 from L1 is defined as 

L1 -L~={u*U2EX*)u1WU2ELl,WEL2}. 

The deletion generalizes the left/right quotient of words and languages. Given words 

U,VEX*, instead of erasing v from the left/right extremity of u, the deletion erases it 

from any place in u. If v does not occur as subword of u, the result of the deletion is 

the empty set. The result of deletion can also be a set of cardinality greater than 1. 

Notice that a language L CX* is del-closed iff L - L 2 L. 
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Proposition 3.3. Let L CX* be an ins-closed language. Then L is del-closed if and 
only [f L = (L - L). 

Proof. Since L is del-closed, L --+ L CL. Now let u EL. Since L is ins-closed, uu EL. 

Therefore UE(L -L), i.e. L&(L - L). We can conclude that L = (L + L). The 

other implication is obvious. 0 

If L is a nonempty language and if DL is the family of all the del-closed languages 

Li containing L, then the intersection 

n Ll 
l., E DL 

of all the del-closed languages containing L is a del-closed language called the del- 
closure of L. The del-closure of L is the smallest del-closed language containing L. 

We will now define a sequence of languages whose union is the del-closure of a 

given language L. Let 

Do(L) = L, 

@(L)=Do(L) - (Do(L) u {llh 

D2(L> =h(L) - @l(L) u {l)), 

Dk+l(L)=Dk(L) - (Dk(L) u {1)X 

Clearly Dk(L) C Dk+,(L). Let 

D(L)= u D/c(L). 
k>O 

Proposition 3.4. D(L) is the del-closure qf the language L. 

Proof. Clearly LCD(L). Let now UE D(L) and uiuu2 ED(L). Then u ED~(L) and 

ui~z42EDj(L) for some integers i,j>O. If k= max{i,j}, then vEDk(L) and ui212.42E 

Dk(L). This implies ~1242 E Dk+l(L) G D(L). Therefore, D(L) is a del-closed language 

containing L. 

Let 7’ be a del-closed language such that L = Do(L) 2 T. Since T is del-closed, if 

Dk(L) 2 T then Dk+l(L) C T. By an induction argument, it follows that D(L) C 7’. 0 

Since, by [5], the family of regular languages is closed under deletion, it follows 

that if L is regular, then the languages Dk(L), k > 0, are also regular. However, it is 

an open question whether D(L) is regular for any regular language L CX*. 
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Recall that, for a language L, the principal congruence PL is defined by: 

u E v(PL) iff vx,y~X* we have xuy~L ++xvy~L. 

When the principal congruence of L has a finite index (finite number of classes) the 

language L is regular. 

If L is commutative, we have the following result. 

Proposition 3.5. Let L cX* be a regular language. rf L is commutative, then D(L) 

is commutative and regular. 

Proof. Let us prove first that D(L) is commutative. To this end, it is sufficient to 

show that Dk+l(L) is commutative if Dk(L) is commutative. Let xuvy E Dk+l(L). If 

xuvy E Dk(L), then we are done. Otherwise, by the definition of Dk+l(L), there exist 

w,z E Dk(L) such that w E (XUV~ t z). SinCe &(L) iS COnKrXJtatiVe, xuvyz E&(L) 

and xvuyz E Dk(L). From the fact that z,xvuyz E&(L) and the definition of Dk+l(L), 

it follows that xvuy EL&+](L), i.e. Dk+l(L) is commutative. 

We will show next that D(L) is regular. To this aim, we show that if u 3 v(Pok(~)) 

then u E ~(PD,+~(L)). Let u 3 v(P~~(L)) and let xuy cDk+l(L). By the definition of 

&+1(L), there exist w,z E Dk(L) such that w E (xuy +- z). Since &(L) is com- 

mutative, xuyz E Dk(L). Hence ~vyz E Dk(L). From the fact that z E Dk(L) and by the 

definition of Dk+i(L), it follows that xvy E&+1(L). In the same way, xvy E &+1(L) 

implies xuy E Dk+l (L). Consequently, u E ~(PD~+,(L)) holds. This means that the number 

of congruence classes of PD,+,(L) is smaller or equal to that of PDF. Remark that 

Do(L)CDi(L)C ... ~D,(L)GD,+i(L)... 

It can be shown (see [3]) that D,(L)=D,+l(L) for some t, t2 1. Thus, D(L) =D,(L) 
which implies that D(L) is regular. 0 

4. Generators of insertion-closed and deletion-closed languages 

This section is focused on ins-closed and del-closed languages that are finitely gen- 

erated. Namely, properties of such languages and of their minimal sets of generators 

are obtained. One of the main results of the section states that, if L is regular, ins- 

closed and del-closed, then its minimal set of generators is a regular maximal bifix 

code, where the notion of bifix code is defined in the following. 

A nonempty language L CX+ is called a prejix (su$‘ix) code if x,xy EL (x, yx EL) 
implies y = 1. It is called a bzjix code if it is both a prefix and a suffix code. L is 

called an injx code if u EL, xuy EL imply x = y = 1. L is an outjix code if xy EL, 

xuy EL imply u= 1. 

Lemma 4.1. Let L C X* be an ins-closed language that is finitely generated. Then 
for any a E alph(L), there exists a positive integer i, such that a’” EL. 
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Proof. We begin by showing that for any a E alph(L) there exists w 6X* such that 

aw E L or wa EL. Suppose this is not the case. Then there exists a E alph(L) such that 

uavEL for some u,v~X* with IuI,IuI>l. L t e n=min{jxl,ly IxayEL,x,yEX+}. 

Now let uav EL with min{ IuJ, IuI} = n. Moreover, let m = max{ IzI 1 z E K}, where K is 

the minimal set of generators of L. 

Case 1: /uI < IuI. Consider (ua)mum EL. Since m)ual > m, u’av’ E K or v’au” E K, 

where v’ E alph(L)+ and U’ is a suffix of u or U” is a prefix of u with Iu’l, lu”l < 1~1. 

From the assumption that (aX*UX*a)nK = 8, it follows that Iu’I, Iu”I 3 1 and u’, u”#u. 

However, this contradicts the minimality of Iz.1. 

Case 2: IL- < Iul. C onsidering um(av)m EL, we can prove in a similar way as above 

that we reach a contradiction. 

As both cases lead to contradictions, our assumption was false and aw E L or wa E L 

for some WE/Y*. 

Now consider amwm EL or w”‘a”’ EL. In this case, it is easy to verify that aiU t L 

for some positive integer i,, by taking m =I max{ /z/ 1 z E K}. 0 

Proposition 4.1. Let L CX* be a finitely generated ins-closed language and K be its 

minimal set of generators. Then: 

(i) K contains a finite maximal prefix (suffix) code over alph(L); 

(ii) If K is a code over alph(L) then K = alph(L)” for some n > 1; 

(iii) If L is del-closed then K = alph(L)” for some n 3 1. 

Proof. (i) Let P={u~Llu # 1, u=ux, c~L\{l}, x~X*~x=l}. Then obviously 

P is a prefix code over alph(L) and P C K. Let x E alph(L)+ and let x = alaI.. . a,, 

where a, E alph(L), 1 < i <n. By Lemma 4.1, for any ai, 1 d i <n, there exists a positive 

integer ti such that a:’ EL. Therefore, ala, ‘I-’ EL. Then ala2a~-‘a~-’ EL. 

Assume alaz... aiw EL. Then ala2 . . . aiai+la,+, ‘I’‘-‘w EL. By induction, there exists 

y E alph(L)* such that xy EL. Hence xy E Palph(L)*. This means that P is a maximal 

prefix code. 

The proof that L contains a finite maximal suffix code can be carried out symmet- 

rically. 

(ii) By (i), the code K contains a finite maximal prefix code P. Since P is finite, 

P is thin. This implies K = P, because every maximal prefix code that is thin is also 

a maximal code. 

Claim. For any a E alph(L), there exists v E K, Iv1 = max{ IyI / y E K} such that u EX*a. 

Indeed, let v = v’b be a word of maximal length in K. Consider the word v’a. Recall 

that for two words x, y E X*, x <,y iff x is a prefix of y. As K is a maximal prefix 

code, there exists w E K such that v’a <rw or w <ruta. (Otherwise v’a can be added 

to K ~ a contradiction with the fact that K is maximal.) 

If v’a <rw, as (v'al = lv’bl it follows that w = v’a, which implies v’a E K. We have 

found therefore a word in K which ends in a. 



12 M. Ito et al. I Theoretical Computer Science 183 (1997) 3-19 

Assume now that w <&a_ If w # v’a then w dPv’ <&b - a contradiction with the 

fact that K is a prefix code. 

The proof of the Claim is thus complete. 

Let us return to the proof of the proposition. Let u E K such that IuI= min{ 1x1 1 x E K} 
and let a E aZph(L). Assume that u = bu’ for some b E aZph(L). According to the Claim, 

there exists v E K of maximal length such that v = v’a, v’ EX”. Consider the word 

v’ua = v’bu’a EL. From the facts that K is a prefix code, lvl= max{ Iyl 1 y E K} and 

1~1 = min{lxl IxEK} we deduce that u’a E K. Thus, u’alph(L) s K. 
If Iu’I # 0, we continue the same procedure. Namely, take u’a in the role of 

U. Let a’ E alph(L). According to the Claim, there exists v E K, of maximal length, 

such that v = v’a’. As L is ins-closed, the word v’u’aa’ EL. If u’ # 1 then u’ = cu” 

and v’cu”aa’ EL. From the fact that K is a prefix code and that v’c is of max- 

imal length, u”aa’ of minimal length, we deduce that v’c, u”aa’ E K. This means 

u”alph(L)2 CL. Continuing this procedure, we can get alph(L 2 K. Since K is a 

code, K = alph(L)I”I. 
(iii) Assume U, ux E K for x E aZph(L)+. Since L is del-closed, x EL. If x # 1, then 

ux E K2K*, a contradiction. Therefore, x = 1. This means that K is a finite prefix code, 

i.e. a code. By (ii), L = (alph(L)“)* for some iz, n 3 1. Notice that 1 EL. Cl 

Finitely generated ins-closed languages are not always of the form (alph(L)“)*. For 

instance, if X = {a, b} and L = ({a} Ux2 UX3)+ = {a, ab, ba, bb, bab, bbb}+, then L is 

finitely generated and ins-closed but does not equal {a, b}*. 
A language L is called strongly ins-closed if both L and its complement Lc are 

ins-closed. 

Example. Let X = {al, a2,. . . , a,}, let Y c X be a nonempty subalphabet of X and let 

z =x\r. 

(1) If L = Y*, then Lc =X* \Y*. Both L and Lc are ins-closed, hence both are 

strongly ins-closed languages and Lc is an ideal of X*. Recall that a language L is a 

right (left) ideal of X* if u EL and x EX* implies U.X EL (xu EL). L is an ideal of 

X* if it is both left and right ideal. 

(2) If L = YX*, then Lc = ZX* U { 1). Both L and Lc are ins-closed, hence both are 

strongly ins-closed languages. Remark that L and Lc\{ 1) are both right ideals. 

If L is strongly ins-closed, then UD E L implies either u EL or v E L. If u EL and if 

WCEL’, then XEL’. 

Proposition 4.2. Assume 1 4 L. Let L LX* be a strongly ins-closed language such 
that L # 0,X+. Then the following assertions are equivalent: 

(1) L is an ideal of X*, 
(2) Lc is finitely generated, 
(3) There exist Y,ZCX such that Y,Z # 0, YnZ=0,X==YUZ, Lc=Z* and 

L =x*\z*. 
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Proof. (1) =% (3): Let Y =L fl X and Z=X\Y. Since L U L’=X* and L,Lc are 

nontrivial subsemigroups, Y and Z are nonempty. From Y C: L and L a subsemigroup 

follows Yf C L. Similarly, it can be shown that Z+ C Lc. Note that 1 E Lc. Indeed, as 

L is an ideal, 1 EL would imply L =X* - a contradiction. Consequently, we have that 

z* & LC. 

Let now u E Lc. If u 6 Z*, then u = xay with a E Y C: L. Since L is an ideal, 1.4 EL, 

a contradiction. Hence u E Z*, which means Lc 2 Z*. 

The proofs of (3) + (2) and (3) =+ (1) are obvious. 

We show (2) + (3). Let Y =X n L and let Z =xnLc. We have that alph(LC)nY = 8. 

Indeed, suppose c E alph(Lc)fl Y. Since Lc is finitely generated, by Lemma 4. I, c” E Lc 

for some n, n >, 1. On the other hand, since c E Y s L and L is ins-closed, c” E L, a 

contradiction. 

Therefore, aZph(LC) = Z, Y n Z = 0, Lc = Z* and L =X*\Z*. II 

Let L C X*. Then ins(L) = A4 is ins-closed. On the other hand, let A4 be an ins-closed 

monoid. Then ins(M) = M. 

Proposition 4.3. Let L LX* be a regular language. If L is ins-closed and del-closed, 

then the minimal set of generators K of L is a regular maximal b$x code over 

alph( L). In fact, K is a maximal prefix code and a maximal suffix code over alph(L). 

Proof. Since K = (L\{ l})\(L\{ l})‘, K is regular. Moreover, since L is del-closed, K 

is a bifix code. By the same procedure as in the proof of Proposition 4.1(i), it can be 

shown that K is a maximal prefix (suffix) code over aZph(L). 

Indeed, let a E aZph(L). Then uav E L for some u, v E alph(L)*. Therefore, u”(av)” E L 

for any n, n 3 1. Let A = (X, S, SO, F, P) be a finite deterministic automaton accepting L 

and let m 3 card(S). Then there exist s, t, 1 <s d t d card(S) + 1 such that SOU~JS 

and s&es’. Let i = t - s. Then SO@==+S” and SOU*+~+S”. Since um(av)m EL, 

u’n+i(av)m EL. Hence u’ EL, because L is del-closed. On the other hand, u’(av)’ EL. 

Therefore, (au)’ EL, i.e. aw EL for some w E alph(L)*. By the same automaton argu- 

ment, there exists a positive integer iO such that a’0 EL. (Since aw E L, we have 

a”wn E L for any n, n 3 1. Notice that soa’===+?, soaj==+s’ for some s’ ES and i,j, 

1 < i < j < card(S) + 1. Let i, = j - i. Then soa”+‘aww”tis”, sOanw”+s” for some 

s” E S, if n > card(S). Hence a”+‘Ow”, a”w” EL. Since L is del-closed, alU EL.) 

LetnowxEX+. Thenx=ataz...a,, whercaiEX, l~i<r.LetH={a’,‘,a;‘,...,a~} 

SL. Obviously, xy=ala2...a,yE(H t* H) CL for some y E X”. This means that 

K is a maximal prefix code. q 

In the above proof, the condition of regularity is necessary. 

Example 1. Let X = {a, b} and let L = (ab +--* ab) U {l}. Then L is ins-closed and 

del-closed. Moreover, K is a bifix code. But K is not a maximal bifix code over (a, b} 

since {ba} UK is a bifix code where K is the minimal set of generators of L. 
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The converse of Proposition 4.3 does not hold. 

Example 2. Let X = {a, b} and let C = {u”} U {b2} Uab+a U bu+b. Then C is a regular 

maximal bifix code over {a, b}. But C* is not ins-closed since ub(ubu)u = ububuu 4 L 

though uba EL. 

A language L is reflective if for all x, y E X* we have xy EL w yx EL. 

Proposition 4.4. Let L LX* be a rejective ins-closed language. If L is del-closed, 
then the minimal set of generators K of L is a maximal bijix code over alph(L). 

Proof. Let a E ulph(L). Then there exist u,v E ulph(L)* such that uuv E L. Since L is 

reflective, avu EL (resp. vua EL). Let x E aZph(L)+. Then x = ala2 . . a,, ai E ulph(L), 
1 <i<r. Let ui(viui) EL (resp. (viui)ai EL). As L is ins-closed, by inserting into 

u~(urur) the words u~(v~zQ), . . .u,.(v,.u,.) (resp. by inserting into (u,u,)u, the words 

(vr--I%-I)&I, . ..(vrur)ut) we obtain that the word u~u~...u,.(v,.~~)(v,_~24._~)... 

(V~UZ)(U~UI) belongs to L (resp. (v,u,)...(v2~2)(v~u~)u~a~ . ..a.. EL). Consequently, 

xw EL (resp. wx EL) for some w E uZph(L)*. This means L is left (resp. right) dense 

in uZph(L) which implies K =(L\{ l})\(L\{ 1})2 is a maximal prefix (resp. suffix) 

code. 0 

Example 3. Let X = {a, b} and let L= {u EX* 1 1~1, = Iulb}. Then L is a reflective 

language that is ins-closed and del-closed. K = {v E X” 1 v = al u2 . . . a,, ai E X, 1 < i < r, 

Iv/, = Iuib and Iala2 . . .a& # lalu2.. .at(b for any t, 1 <t < r} is a maximal bifix code. 

Notice that uubb E K, but buub $! K. This means that K is not reflective. 

Example 4. Let X = {a, b} and let L=(u*ba*bu*)* U a*. Then L is a regular lan- 

guage that is ins-closed and del-closed. The minimal set of generators K of L, i.e. 

K = (L\{ l})\(L\{ l})’ is the set {u} U bu*b. Moreover, L = ({u, bb} t* {a, bb}) U 

111. 

Proposition 4.5. If a language L is a de&closed submonoid of X*, then L is generated 
by a bifix code P, i.e. L = P*. 

Proof. Let v,vx E L. Since L is del-closed, x E L, i.e. L is a right unitary submonoid. 

Similarly, it can be shown that L is also a left unitary submonoid. By a well known 

result from the theory of codes (see, for example, [ 1, lo]), it follows that L is generated 

by a bifix code. 0 

5. Properties of insertion-closed and deletion-closed languages 

Let L CX* be an ins-closed language. As the result of the insertion of two words 

in L always belongs to L, we can divide the words of L into two categories: words 
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that can be obtained as the result of insertions of other words of L, and words that 

cannot be obtained in this fashion. 

Consider the set 

J={uELlu # l>U 6 ((L\{ll) + (L\{1~))~=L\((L\{l~) -* (L\{l)))* 

i.e., J consists of the words of L that are not the result of insertions of any words 

of L. Then J is uniquely determined and L\{ 1) = (J -* J). J is called the ins-hasr 

of L. 

The following result shows that if L is regular, its ins-base is also regular. The proof 

is based on the fact that one can construct a generalized sequential machine (for the 

definition see, for example, [9]) g such that g(L) is the set of words in L that can be 

obtained as a result of insertions. 

Proposition 5.1. If L is a regular ins-closed language, then its ins-base J is a regulur 
language. 

Proof. Let L be a regular ins-closed language. We can assume, without loss of gen- 

erality, that L is l-free. Let A = (X, S,so,F,P) be a finite deterministic automaton 

accepting L, where S = {sa,si,. . . ,s,} and the rules of P are of the form s,a-s,, 
Si,Sj E IS, U EX. 

We will show that there exists a generalized sequential machine g such that 

g(L) = L\J. As the family of regular languages is closed under gsm mappings and 

set difference, it will follow that J is regular. 

Notice first that, as L is ins-closed, L\J = {u E L 1 u = UI WUZ, ulu2 EL, w E L}. 

Consider now the gsm g = (X,X, S’, SO, F’, P’) where 

S’= SU{S~‘IO~j~n,O~i~n}U{s:ISiEF} 

F’ = {s; Is, EF} 

P’ = {SjU-USk I SiU+Sk E P} 

u{s,aiaSy I soa--vj E P} 

U{s%z 
J 

+LLYF) I SjU-Sk E P, 0 d i <n} 

U{Sj’iCZ+L2S: I SjU+Sl E P,S[ E F} 

U{S~U+CZ.S~ 1 sia-sk E P} 

(1) 

(2) 

(3) 

(4) 

(5) 

The idea of the proof is the following. We have constructed card(S) indexed copies 

of the automaton A, A(‘) = (X, SC’) , st’, F(‘), PC’)), 1 < i < n. Given a word UI wu2 E L, the 

gsm g works as follows. 

The rules (1) scan the word ui, using the corresponding productions of P. Suppose 

that after scanning ~1, the automaton is in state si. Rules (2) switch the derivation to 

the automaton A(‘), starting thus to scan the word w. The word w is parsed by using 

rules (3) of the automaton A(‘). If a final state is reached, that is if w E L, rules (4) 
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switch the derivation back to A. The fact that the index of the automaton was (i) 

allows us to remember the state si where we left the scanning of ~12~2. Now, rules (5) 

continue the scanning of 02. If a final state is reached, this means uiv2 EL. (In this 

second part of the derivation for vlv~ primed versions of the states are used, in order 

to make sure that at least one word w has been encountered in the meantime.) 

From the above explanations it follows that g reaches a final state iff the input 

word u is of the form VIWUZ, vl v2 EL, w EL. Consequently, g(L) = {uiwv~ Iv1112 E 

L,WEL}. 0 

As we have seen in Proposition 5.1, if L is regular and ins-closed, its ins-base is regu- 

lar. The ins-base of L can be an infinite language. For example, L = ba*b -* ba*b = 

{bxb 1 x EX*, Jxlb is even} is regular and ins-closed but J contains the infinite set ba*b. 

If we put the additional constraint that L is del-closed, the ins-base will always be finite, 

as shown by the following proposition. First, we need the following lemma. 

Lemma 5.1. Let L C X* be a regular language that is ins-closed and del-closed. Then 

there exists a positive integer n such that for every u EX+ we have that u” EL. 

Proof. Since the minimal set of generators of L is a maximal prefix code, for any 

u E aZph(L)+ there exists y EX* such that uy E L. Let pa 1 be an integer. Then 

&‘yJ EL. In the same way as in the proof of Proposition 4.3, there exists a positive 

integer r satisfying the following condition: Vp, p >r, 3t,l <t <r such that UP+’ yp EL. 

Since Gyp EL and L is del-closed, uf EL. If we now let n = r! then u” EL. 0 

Proposition 5.2. Let L CX* be a regular language that is ins-closed and del-closed. 

Let K be the minimal set of generators of L and J be the ins-base of L. Then, 

(i) J is finite. 

(ii) If J=K then K=alph(L)” for some n>l. 

Proof. (i) Suppose J is infinite. Then, by a pumping lemma for a regular language, 

there exist u,v, w E alph(L)* such that v E alph(L)+, uvw E J and uv*w E L. Hence 

uw EL. Notice that, by Lemma 5.1, there exists n, n > 1 such that z” EL for any 

z E aZph(L)*. Since L is ins-closed, UU(U”-~W”-~)W = UUU”-‘w” EL. From the assump- 

tion that L is del-closed, it follows that UVU”-’ EL. On the other hand, since u” EL, 

u”-‘(uvu”-l)u = unuu” EL. By the assumption that L is del-closed, u EL. However, this 

contradicts the assumption that uvw E J because uw EL and v EL. Therefore, J must 

be finite. 

(ii) By (i), J is finite, hence K is finite. Therefore, by Proposition 4.l(iii), 

L =(alph(L)“)* for some n, n> 1. 0 

Proposition 5.3. Let L CX* be a rejlectiue language that is ins-closed and del-closed. 

Then the following assertions are equivalent: 

(I ) K is reflective; 
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(2) K=J; 
(3) L = (a/ph(L)“)* fir some n, n B 1. 

Proof. (3) =$ (1): Obvious. 

(1) + (2): Notice that J 2 K. Let u E K\J. Then there exist U/U”, v E L such that 

u = U’VU”. Since K is reflective, (u”u’)u E K. On the other hand, since U’U” EL, U”U’ E L 

and hence (u”u’)v $ K, a contradiction. This means that J = K. 
(2) * (3): Let UE K with IsI= min(lz( Iz EL) and Iet u =bu’ where b E ffZ~h(L) 

and U’ E afph(L)*. Let a E alph(L). Then there exists v E K such that v = v/u with 

v’ E uZph(L)* because L is reflective. Consider v’bu’a E L. Since J = K, v’bu’a E K2K*. 
Notice that U’ is a prefix of v and lu’al = IuI = min{ /zI /z EL}. This implies that u’a E K. 

Consequently, u’aZph(L) C K. Let u’a E K for any a E aZph(L). Let u’a = bu”u where 

b E al@(L). Then the above method implies (u”a)aZph(L) C K. Since a E aZph(L) was 

taken arbitrarily, u”aZph(L)aZph(L) 2 K. By induction, we have aZph(L)iUI C K. The fact 

that K is a prefix code implies K =aZph(L)I’i and L = (aZph(L)I”I)*. 0 

6. Fully insertion-closed languages 

We have been considering so far languages L with the property that ins(L) 2 L (ins- 

closed languages). Of special interest are the languages with the property that all words 

of X* belong to ins(L), that is, any word has the property that its insertion in a word 

of L still belongs to L. 

A language L LX* is said to be: 

- fuZZy ins-closed or simply jins-closed if ins(L) =X*; 
- extensible (see [Zj) if u = ui ~2 EL, x E X* implies ~llxu2 = YI)S for some L’ E L and 

r,sEX*. 

Let LCX* and let infL)={uELIu # 1, u =xoy, u E L + u = v}. Hence inx(L) is 

the set of all the words in L that are not empty and are minimal in L relatively to the 

infix order. Clearly if L # {l}, then inf(L) is an infix code. For every ideal L of X*, 

inf(L) is the unique infix code with the property L=X*infiL)X*. 
A language L is fins-closed iff u = 241~2 EL implies uixu2 EL for all x E X*. Such 

a language is ins-closed and it is an ideal of X* that has also been called p-ideal in 
[ 111. Every fins-closed language is extensible and is a regular language [I 11. 

Proposition 6.1. A language L is extensible ifand only if T =X*LX* is a fins-closed 

language. 

Proof. (==+) Let UET and x6X*. Let u=x~x)Iv~v~yiy~ with V=VIV~EL and nix;, 

YlY{ EX*. Then x~xx~vi~~Y~ yi E T and xix{vi v2,vixy{ E T. Since L is extensible, 

vrxv~ =rwt with w EL and r, t EX*, therefore xix~uixv2yiy{ =x,x{rwtyl y{ E T. Hence 

T is fins-closed. 

(+=) Let u=uluz~L and letxEX*. Since T is fins-closed, ~1x2~ E T =X*LX* and 

ulxu2=rvt for some UEL and r,t~X *. Hence L is an extensible language. 0 
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Corollary 6.1. An ideal L is fins-closed if and only if inf(L) is an extensible infix 

code. 

Proof. (+) Clearly L # {l}, hence inf(L) is an infix code. Let u = ~1~2 E inf(L) &L 

and x E X*. Since L is fins-closed, uixu2 EL C X*inf(L)X*. Hence uixuz = rvs with 

v E inf(L). This shows that inf(L) is extensible. 

(+) Let u = uiu2 EL =X*inf(L)X* and let x EX*. Then 241~~2 = rvs with v E inf(L). 

Since L is an ideal, then rvs EL which implies 24ixu2 EL. Therefore X* = ins(L), i.e., 

L is fins-closed. q 

Corollary 6.2. Every extensible infix code U is regular. 

Proof. If T =X* UX*, then T is fins-closed and hence regular [ll]. This implies that 

inf(T) is regular. Clearly U = inf(T) and hence U is regular. 0 

Proposition 6.2. Let L C X*. Then L is extensible tf and only tf inf(L) is extensible. 

Proof. (+) Let u E inf(L) and let x EX*. Since L is extensible, u’xu” EX*LX* with 

u = u’u”. Hence, there exist u E inf(L) and r, s E X* such that u’xu” = rvs, i.e. u’xu” E 

X*inf(L)X*. This means that inf(L) is extensible. 

(+) Let u EL and let x E X*. Consider u’xu” where u = u’u”. Since u E L, there 

exist v E inf(L) and r,s EX” such that u=rvs. If lu’] < (rl or Ju’] >rv, then obvi- 

ously u’xu” EX*VX* G X*inf(L)X*. If (~‘1 > Irl and lu’l < It-vi, then v=v’u”, U’ =rv’ 

and u’xu” = rv’xv”s. Since inf(L) is extensible, V’XV’~ E X*inf (L)X* and hence u’xu” E 

X*inf(L)X*. In all the cases, we have u’xu” E X*Lx*. This means that L is 

extensible. 0 

Proposition 6.3. Let S and T be two ideals of X*. Then the catenation ST of S and 

T is a fins-closed language if and only if both S and T are fins-closed languages. 

Proof. (+) Let u ES, let x E X* and let v E T with Iv] = min{ (WI j w E T}. Let u = u’u” 

with u’, u” E X*. Since ST is fins-closed, U’U”U E ST implies U’XU”U E ST. The mini- 

mality of /v/ implies U’XU” E SX* c S. This means that S is fins-closed. By symmetry, 

we can show that T is fins-closed. 

(+) Let S and T be two fins-closed languages. Let u EST where u =sls2tlt2 with 

~1.~2 ES and tlt2 E T. If x EX*, then slxsztltz EST, sls2xtlt2 E ST because S is fins- 

closed and sls2tlxt2 E ST because T is fins-closed. Hence ST is fins-closed. q 
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